Meta-analysis of rare events in drug safety studies: A unifying framework for exact inferences

Dungang Liu

University of Cincinnati Lindner College of Business dungang.liu@uc.edu

The 3rd Annual ASA New Jersey Chapter / Bayer Statistics Workshop Whippany, NJ November 13, 2016

Outline

For meta-analysis of rare events, I will present

Part I An exact approach by combining *p*-value functions Part II A unifying framework for exact inferences

Part I An exact approach by combining *p*-value functions - Liu, Liu and Xie, 2014, *JASA*, 109, 1450-1465.

A Motivating Example

Nissen and Wolski (2007, N. Engl. J. Med.)

- Performed a meta-analysis of 48 independent clinical trials.
- Examine if the diabetes drug *Avandia* is associated with some **adverse events** (e.g. myocardial infarction).

Study ID	Treatment		Co	Control	
	Xi	ni	Уi	m _i	
1	2	357	0	176	
2	2	391	1	207	
3	1	774	1	185	
÷	÷	÷	÷	÷	
46	0	25	0	24	
47	0	196	0	195	
48	0	676	0	225	

Result and impact of Nissen and Wolski's meta-analysis

Result: common odds ratio (OR) (Peto's method)

- 95% confidence interval=(1.03 1.98);
- *P*-value=0.03 for testing H_0 : OR = 1 vs H_1 : OR \neq 1.

<u>Conclusion</u>: *Avandia* is significantly associated with myocardial infarction.

"Significant" impacts:

- The stock price of GlaxoSmithKline (GSK) dropped 7.8% on a single day.
- An alert issued by FDA immediately.
- Over 1000 lawsuits against GSK.
- US sales in 2Q 2007 dropped 22% compared to 2006.

Controversy 1: zero total event studies

A **zero total event study** refers to a study that does not observe any event in both treatment and control arms.

Avandia data: 10 zero total event studies out of 48 studies.

Study ID	Trea	atment	Co	Control	
	Xi	n _i	Уi	m _i	
1	2	357	0	176	
2	2	391	1	207	
3	1	774	1	185	
÷	÷	÷	÷	÷	
46	0	25	0	24	
47	0	196	0	195	
48	0	676	0	225	

Controversy 1: zero total event studies

Popular meta-analysis methods:

- Standard inverse-variance method
- Mantel-Haenszel (MH) method
- Peto's method (used by Nissen and Wolski, 2007)

How do these methods handle zero total event studies?

- Exclude from analysis (Nissen and Wolski, 2007);
- Add 0.5 to zero cells.

Both have undesirable impact on inference.

Question 1: Can we use all available data without artificially assigning numbers to zero events?

Controversy 2: asymptotics for rare events?

Empirical coverage probability of 95% confidence interval – based on simulated data similar to Avandia data

Question 2: Can we develop a general exact meta-analysis framework for discrete data?

Nissen and Wolski's study raised

Question 1: Can we use all available data without artificially assigning numbers to zero events?

Question 2: Can we develop a general exact meta-analysis framework for discrete data?

Our answer: Yes!

Problem setting

Consider K independent trials with treatment and control.

- $X_i \sim Binom(n_i, \pi_{1i})$ and $Y_i \sim Binom(m_i, \pi_{0i})$.
- The odds ratio

$$\psi = \frac{\pi_{1i}/(1-\pi_{1i})}{\pi_{0i}/(1-\pi_{0i})}$$
 $(i = 1,...,K)$

is often assumed being constant across the studies.

• Question: how to infer ψ when π_{1i} and π_{0i} are **extremely low**.

$$\hat{\psi}_i = \frac{x_i/(n_i - x_i)}{y_i/(m_i - y_i)}$$
 $(i = 1, ..., K)$

<u>Note</u>: our following discussion applies to inference for a general parameter ψ in discrete data.

Meta-analysis principles

Conventional principle – combining point estimates

$$\hat{\psi}_c = \frac{1}{\sum_{i=1}^K w_i} (w_1 \hat{\psi}_1 + \dots + w_K \hat{\psi}_K)$$

Our new approach – combining p-value functions

$$p_{c}(\psi) = \Phi\left(\frac{1}{\sqrt{\sum_{i=1}^{K} w_{i}^{2}}}\left(w_{1}\Phi^{-1}(p_{1}(\psi)) + \dots + w_{K}\Phi^{-1}(p_{K}(\psi))\right)\right)$$

- What is a *p*-value function?
- Why do we use such a combining formula?

What is a *p*-value function?

To make inference for ψ , we consider testing the hypothesis

$$H_0: \psi = \psi^*$$
 versus $H_1: \psi > \psi^*$,

where ψ^* is an arbitrary but fixed value on the parameter space.

We suppose that

a *p*-value *p_i*(*ψ*^{*}; *X_i*, *Y_i*) can be obtained based on an **exact** test from the *i*-th study.

Example: Using the mid-*p* adaption of Fisher's exact test, we obtain a *p*-value for the odds ratio:

$$p_i(\psi^*; x_i, y_i) = \operatorname{pr}_{\psi^*}(X_i > x_i \mid T_i = t_i) + \frac{1}{2} \operatorname{pr}_{\psi^*}(X_i = x_i \mid T_i = t_i).$$

where X_i follows the noncentral hypergeometric distribution conditional on $T_i = X_i + Y_i = t_i$

Remarks on the *p*-value function

- The *p*-value $p_i(\psi^*; X_i, Y_i)$ is a function defined on both the parameter space and sample space.
- Given the sample (x_i, y_i) , the function $p_i(\cdot; x_i, y_i)$ is typically a distribution function on the parameter space.
- This distribution function p_i(·) is called a p-value function or a significance function (Fraser, 1991, JASA).
- The *p*-value function *p_i*(·) can be viewed as a "distribution estimate" of the unknown parameter.
 - Schweder and Hjort, 2002, Scand. J. Statist. Singh et al., 2005, Ann. Statist.
 - Xie et al., 2011, JASA Fraser, 2011, Statist. Sci. Xie and Singh, 2013, Int. Statist. Rev. •

P-value function curves

Black solid curve – an individual p-value function

• Obtained by using the mid-*p* adaptation of Fisher exact test on odds ratio in a study that observes $x_i = 1$ and $y_i = 3$ with sample sizes $(n_i, m_i) = (15, 60)$.

Red dashed curve – the combined *p*-value function

• Obtained by combining two independent copies of the above individual *p*-value function.

How to combine *p*-value functions?

$$p_c(\psi) = \Phi\left(\frac{1}{\sqrt{\sum_{i=1}^K w_i^2}}\left(w_1\Phi^{-1}(p_1(\psi)) + \dots + w_K\Phi^{-1}(p_K(\psi))\right)\right)$$

- $p_1(\psi), \cdots, p_K(\psi)$ are *p*-value functions.
- $\Phi(\cdot)$ is the CDF of the standard normal distribution.
- *w_i* is the weight assigned to the *i*-th study.

The simple combining formula yields statements that explicitly account for the impact of individual studies on the overall inference (e.g., efficiency/power, type I error rate).

Inference from a *p*-value function

The combined *p*-value function $p_c(\psi)$ can be used for making inference for the parameter ψ .

- **Point estimate**. The median of the distribution $p_c(\psi)$, namely $\hat{\psi}_c = p_c^{-1}(1/2)$, can be used as a point estimator.
- Interval estimate. The interval $(p_c^{-1}(\alpha/2), p_c^{-1}(1-\alpha/2))$ can be used as a $100(1-\alpha)\%$ confidence interval.
- *P*-value. The value of *p_c*(*ψ*^{*}) can be readily used as the overall *p*-value for testing the hypothesis *H*₀ : *ψ* = *ψ*^{*} vs *H*₁ : *ψ* > *ψ*^{*}.

Figure 1. The plot is a graphical illustration on making inference using a confidence distribution, including examples of point estimators (mode $\hat{\theta}$, median M_n and mean $\bar{\theta}$), a level 95% confidence interval and a one-sided p-value.

Preview of desirable properties

Practical usefulness

- Our approach includes in the analysis all available data, including zero total event studies, without using any artificial correction for zero event.

Methodological broadness

– Our framework encompasses a broad class of exact meta-analysis methods, as it permits broad choices for the combining elements, such as tests used in individual studies, and any parameter of interest.

Theoretical soundness

-Our approach yields statements that explicitly account for the impact of individual studies on the overall inference (efficiency/power and type I error rate).

Numerical superiority

-Our approach outperforms existing commonly used meta-analysis methods in the setting of rare events.

Data sets used in numerical studies

- 1. Avandia data (Nissen and Wolski, 2007, Table 3).
 - *K*=48;
 - $median(n_i)=222$, $median(m_i)=142$.
 - 10 zero total event studies.
- 2. Promotion data (Gastwirth, 1984, Table 8).
 - *K*=10;
 - median (n_i) =25, median (m_i) =9.
 - Zero events in one arm across all studies.

_

Promotion data

a				
Study ID	Whites		Blacks	
	Xi	n _i	Уi	mi
1	4	20	0	7
2	4	17	0	7
3	2	15	0	8
4	1	18	0	8
5	1	18	0	8
6	1	30	0	10
7	2	31	0	10
8	1	31	0	10
9	1	30	0	10
10	1	34	0	13

.

Simulation setting

We mimic the data structure of Avandia data or promotion data.

- $K = 482 \times 2$ tables with the row margins being the same as the tables in Avandia data (or promotion data, K = 10).
- A fixed odds ratio (OR) ranging from 1 to 10.
- { π_{0i} , i = 1, 2, ..., 48} are generated from U(0, ξ), where $\xi = 0.01, 0.05, 0.1$.
- $\{\pi_{1i}, i = 1, 2, ..., 48\}$ are determined by

 $logit(\pi_{1i}) = log(OR) + logit(\pi_{0i})$

Methods for numerical comparison

- Combining the *p*-value functions;
- Combining the beta-adjusted *p*-value functions;
- MH method without CCs (excluding zero total event studies);
- MH method with 0.5 CCs for zero events;
- Peto's method without CCs (excluding zero total event studies);
- Peto's method with 0.5 CCs for zero events.

Coverage probability of 95% CI

Coverage probability of 95% CI

Power of rejecting OR=1

10

Real data analysis

	Avandia data			Promotion data		
	95% CI	Р	-	95% CI	Р	
Proposed exact	(0.972, 2.001)	0.071		(0.842, ∞)	0.080	
Proposed exact (adj)	(1.037, 2.004)	0.029		(1.054, ∞)	0.042	
MH	(1.029, 1.978)	0.033		-	-	
MH-CC	(0.919, 1.647)	0.163		(0.738, 5.396)	0.174	
Peto	(1.031, 1.979)	0.032		(1.522, 12.86)	0.006	
Peto-CC	(0.921, 1.659)	0.158		(0.776, 4.270)	0.168	

CI: confidence interval;

P: *p*-value for hypothesis testing $H_0: \psi = 1$ versus $H_1: \psi \neq 1$;

adj: apply beta adjustment to individual *p*-value functions;

CC: add 0.5 continuity corrections to zero events.

Summary

Meta-analysis for discrete data $\downarrow \downarrow$ Combining <u>point</u> estimates $\downarrow \downarrow$ Combining *p*-value <u>functions</u> based on exact tests

Part II A unifying framework for exact inferences

- LLX's method of combining *p*-value functions
- Tian et al.'s method of combining confidence intervals - (Tian et al., 2009, Biostatistics)